Управление образования Артемовского муниципального округа

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 6» Артемовского муниципального округа ИНН 6602007205 КПП 667701001 623780 Свердловская область город Артемовский улица Чайковского, 2 тел. (34363) 2-47-40

электронный адрес scoola6@inbox.ru сайт: http://6art.uralschool.ru

УТВЕРЖДЕНО Директор МБОУ «СОШ №6» М.Н. Киселева Приказ от № 77/о от 01.08.2025 года

Дополнительная короткосрочная общеобразовательная общеразвивающая программа «Основы робототехники»

Возраст обучающихся: 6 -12 лет Срок реализации: 1 год

1 Основные характеристики общеразвивающей программы

1.1 Пояснительная записка

Направленность программы: техническая

<u>Актуальность:</u> дополнительная общеобразовательная общеразвивающая программа ««Основы робототехники» разработана в соответствии с основополагающими документами:

- 1. Федеральный Закон Российской Федерации от 29.12.2012 г. № 273 «Об образовании в Российской Федерации»;
- 2. Приказ Минпросвещения России от 09.11.2018 №196 "Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 3. СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей»;
- 4. Методические рекомендации Министерства образования и науки Российской Федерации по проектированию дополнительных общеразвивающих программ (2015 г.) (на основании письма №09-3442 от 18.11.15 Департамента государственной политики в сфере воспитания детей и молодежи Министерства образования и науки РФ); Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (далее ФЗ).
- 5. Федеральный закон Российской Федерации от 14.07.2022 № 295-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации».
- 6. З. Федеральный закон Российской Федерации от 24.07.1998 № 124-ФЗ «Об основных гарантиях прав ребенка в Российской Федерации» (в редакции 2013 г.).
- 7. Концепция развития дополнительного образования детей до 2030 года, утвержденная распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р.
- 8. Указ Президента Российской Федерации от 21.07.2020 № 474 «О национальных целях развития Российской Федерации на период до 2030 года».
- 9. Указ Президента Российской Федерации от 09.11.2022 № 809 «Об утверждении Основ государственной политики по сохранению и укреплению традиционных российских духовно-нравственных ценностей».
- 10.7. Постановление Главного государственного санитарного врача РФ от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» (далее СанПиН).
- 11.Постановление Главного государственного санитарного врача РФ от 28 января 2021 г, № 2 «Об утверждении санитарных правил и норм».

- 12.Постановление Правительства Российской Федерации от 11.10.2023 № 1678 «Об утверждении Правил применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ».
- 13. Приказ Министерства труда и социальной защиты Российской Федерации от 05.05.2018 № 298 «Об утверждении профессионального стандарта «Педагог дополнительного образования детей и взрослых».
- 14. Приказ Министерства просвещения Российской Федерации от 27 июля 2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» (далее Порядок).
- 15. Приказ Министерства просвещения Российской Федерации от 03.09.2019 № 467 «Об утверждении Целевой модели развития региональных систем дополнительного образования детей».
- 16.Приказ Министерства науки и высшего образования РФ и Министерства просвещения РФ от 5 августа 2020 г. № 882/391 «Об утверждении Порядка организации и осуществления образовательной деятельности при сетевой форме реализации образовательных программ».
- 17.Письмо Минобрнауки России № 09-3242 от 18.11.2015 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)».
- 18.Письмо Минобрнауки России от 28.08.2015 № АК-2563/05 «О методических рекомендациях» (вместе с «Методическими рекомендациями по организации образовательной деятельности с использованием сетевых форм реализации образовательных программ».
- 19.Письмо Министерства просвещения Российской Федерации от 30.12.2022 № AБ-3924/06 «О направлении методических рекомендаций» (вместе с «Методическими рекомендациями «Создание современного инклюзивного образовательного пространства для детей с ограниченными возможностями здоровья и детей-инвалидов на базе образовательных организаций, реализующих дополнительные общеобразовательные программы в субъектах Российской Федерации»).
- 20.Письмо Министерства просвещения Российской Федерации от 07.05.2020 № ВБ-976/04 «Рекомендации по реализации внеурочной деятельности, программы воспитания социализации И И дополнительных общеобразовательных программ применением \mathbf{c} дистанционных образовательных технологий».
- 21. Приказ Министерства образования и молодежной политики Свердловской области от 30.03.2018 № 162-Д «Об утверждении Концепции развития образования на территории Свердловской области на период до 2035 года».
- 22.Приказ Министерства образования и молодежной политики Свердловской области от 29.06.2023 № 785-Д «Об утверждении Требований к условиям и

порядку оказания государственной услуги в социальной сфере «Реализация дополнительных образовательных программ в соответствии с социальным сертификатом».

23.Устав МБОУ «СОШ №6».

Настоящий курс предлагает использование образовательных конструкторов FischerTechnik, и аппаратно-программного обеспечения RoboPro как инструмента для обучения школьников конструированию, моделированию и компьютерному управлению.

Актуальность программы обусловлена тем, что в наше время робототехники и компьютеризации обучающегося необходимо учить решать задачи с помощью автоматов, которые он сам может спроектировать, защищать свое решение и воплотить его в реальной модели, т.е. непосредственно сконструировать и запрограммировать.

Данная программа позволяет дать детям и подросткам необходимый уровень технической грамотности, а также с самого юного возраста окунуться в ту деятельность, которая обычно доступна людям только после окончания школы или даже университета.

Работа с образовательными конструкторами FischerTechnik позволяет школьникам в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания: математика, физика, технология.

Широкий функционал и множество специфических деталей конструктора FischerTechnik позволяют создавать не только развлекательные и образовательные проекты, но и прототипы реальных сложных устройств.

В процессе обучения школьники отрабатывают методы управления роботом с помощью контроллера ROBOTICS ТХТ.

Программирование роботов в RoboPro может производиться на разных уровнях сложности, а значит, будет доступно и интересно как начинающему, так и профессионалу. Реальное исполнение программы роботом покажет разработчику, какой алгоритм он на самом деле составил и в каком месте его надо подправить.

Возникает отличная обучающая система: замысел – программа – исполнение, которая реально показывает разработчику результат его работы.

Цель: развитие творческих способностей и формирование раннего профессионального самоопределения подростков в процессе конструирования и проектирования.

Задачи:

Обучающие:

- Закрепить основы конструирования различных проектов на основе образовательных конструкторов.
- Дать первоначальные знания по устройству робототехнических устройств.
- Научить самостоятельно решать технические задачи в процессе конструирования моделей (выбор материала, планирование предстоящих действий, самоконтроль, умение применять полученные знания, приемы и опыт в конструировании других объектов и т.д.).
- Закрепить умение читать графические изображения, создавая мысленный образ в процессе программирования моделей, использовать показания сигналов датчиков, понимать принципы действия обратной связи.

Развивающие:

- Развить логическое мышление, пространственное воображение, творческие способности.
- Развивать образное, техническое мышление и умение выразить свой замысел в проекте.
 - Развить навыки работы на ПК.
- Развить познавательные, интеллектуальные и творческие способности обучающихся, в процессе создания моделей и проектов, умение работать в небольших группах, этику общения.
 - Развить умение довести решение задачи до работающей модели.
- Развить смекалку, находчивость, изобретательность и устойчивый интерес к поисковой творческой деятельности.

- Развить умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.
- Развить умение работать над проектом в команде, эффективно распределять обязанности.

Воспитательные:

- Воспитать чувство товарищества, чувство личной ответственности.
- Сформировать самостоятельность в решении поставленной задачи.
- Развить творческую инициативу и самостоятельность.

Возраст детей: 6-12 лет.

Количество детей в группе: 6-10 человек.

Формы и режим занятий: занятия проходят 1 раза в неделю по 1 часу.

Сроки реализации программы: Программа рассчитана на 36 часов

Планируемые результаты:

По итогам реализации программы дети будут:

Знать:

- теоретические основы создания робототехнических устройств;
- принцип действия простых механизмов: зубчатой и ременной передачи, рычага, блока и колеса на оси;
 - элементную базу при помощи которой собирается устройство;
 - способы сборки моделей (конструктивные особенности);
 - способы и приемы соединения деталей;
- порядок создания алгоритма программы действия робототехнических средств.

Формы контроля и подведения итогов

В конце каждой темы проводится проверка знаний в форме короткого зачета, позволяющего выявить усвоение материала обучающимися.

Вопросы, которые возникают у обучающихся в процессе обучения, выносятся на общее обсуждение также в диалоговой форме разбора материала.

В качестве проверки используются различные формы подведения итогов: проведение внутренних соревнований между обучающимися учебных групп; участие в окружных, городских и международных соревнованиях по робототехнике.

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

No	Название раздела, темы	БНО-ТЕМАТИЧЕСКИИ ПЛАН Количество часов			Формы
п/п		Всего	Теоретических	Практических	аттестации (контроля) по разделам
1	Вводное занятие.	1	1	0	анкетирование
2	История развития робототехники. Современные роботы. Классификация роботов. Назначение.	2	2	0	викторина
3	Знакомство с деталями конструктора FischerTechnik и их способом крепления.	2	1	1	показ
4	Знакомство с графической средой программирования, изучение базовых команд.	4	1	3	показ
5-6	Изучение алгоритмических конструкций	4	1	3	показ
7	Знакомство с программируемым контроллером	2	0,5	1,5	практическое задание
8	Знакомство с датчиками	2	1,5	0,5	показ
9	Управляющие программы для движения по заданному маршруту.	3	0,5	2,5	практическое задание
10- 11	Доработка конструкции и разработка программы робота. Имитация различных препятствий.	4	0	4	практическое задание
12	Использование робота для сбора информации.	2	0,5	1,5	практическое задание
13- 14	Изменение конструкции робота-исследователя. Движение по заданной линии.	2	0,5	1,5	практическое задание

15	Изучение составных	2	1,5	0,5	показ
	алгоритмов, использование				
	подпрограмм.				
16- 17	Проектная деятельность: выбор темы проекта, обзор аналогов, создание проекта.	6	0	6	практическое задание
	Итого:	36	11	25	

Содержание учебно-тематического плана.

Тема 1. Вводное занятие.

Теоретическая часть. Знакомство с программой. Краткие сведения о формах работы. Техника безопасности. Правила работы в лаборатории и организация рабочего места.

Тема 2. История развития робототехники. Современные роботы. Классификация роботов. Назначение.

Теоретическая часть. Что означает слово «робот». Три закона робототехники. Первые прототипы роботов. Механизмы Чебышева. Просмотр видеоматериалов.

Роботы-помощники. Промышленные роботы. Роботы для космоса. Спортивная робототехника. Просмотр видео презентаций.

Tema 3. Знакомство с деталями конструктора FischerTechnik и их способом крепления.

Теоретическая часть. Показ основных деталей конструктора FischerTechnik. Изучение технических характеристик и правил эксплуатации конструкторов fischertechnik.

Практическая часть. Конструирование простых моделей.

Тема 4. Знакомство с графической средой программирования, изучение базовых команд.

Теоретическая часть. Графический интерфейс пользователя. Окно программы. Командное меню. Палитры инструментов. Изучение базовых элементов графической среды программирования.

Практическая часть. Отрисовка простых программ.

Тема 5-6. Изучение алгоритмических конструкций

Теоретическая часть. Изучение основных алгоритмических конструкций. Общее представление о принципах программирования роботов.

Практическая часть. Написание программ.

Тема 7. Знакомство с программируемым контроллером

Теоретическая часть. Что такое программируемый контроллер. Принцип работы.

Практическая часть. Наладка связи контроллера и персонального компьютера. Загрузка программы в контроллер.

Тема 8. Знакомство с датчиками

Теоретическая часть. Изучение принципа работы датчика температуры, фоторезистора.

Практическая часть. Написание программ с использованием сигналов с датчиков.

Тема 9. Управляющие программы для движения по заданному маршруту.

Теоретическая часть. Изучение принципа работы серводвигателя.

Практическая часть. Написание программы для движения по заданному маршруту.

Тема 10-11. Доработка конструкции и разработка программы робота.

Имитация различных препятствий

Практическая часть. Доработка конструкции и разработка программы робота. Имитация различных препятствий.

Тема 12. Использование робота для сбора информации.

Теоретическая часть. Особенности работы робота с видеокамерой.

Практическая часть. Подключение видеокамеры к роботу. Написание программы для робота-исследователя.

Тема 13-14. Изменение конструкции робота-исследователя. Движение по заданной линии.

Теоретическая часть. Изучение работы датчика цвета.

Практическая часть. Изменение конструкции робота-исследователя. Написание программы движения по заданной линии.

Тема 15. Изучение составных алгоритмов, использование подпрограмм.

Теоретическая часть. Изучение составных алгоритмов.

Практическая часть. Написание программ с использованием подпрограмм.

Тема 16. Проектная деятельность: выбор темы проекта, обзор аналогов, создание проекта.

Практическая часть. Назначение модели. Алгоритм действий робота. Составление программы. Испытание модели. Отладка программы. Совершенствование программы.

Тема 17. Итоговое занятие.

Практическая часть. Анализ ошибок и успехов, рассмотрение наиболее удачных конструкций.

Организационно-педагогические условия реализации программы.

1. Учебно-методическое обеспечение программы

Занятия проводятся в форме лекций, обсуждения и практических работ.

При работе с детьми в учебных группах используются различные методы: словесные, метод проблемного обучения, проектно-конструкторский метод, а также игровой метод.

Метод строго регламентированного задания. Выполнение целостноконструктивных и расчленено-конструктивных заданий (сборка основных узлов модели по схеме; сборка всей модели по схеме).

Групповой метод (мини-группы). Создание модели по предложенной схеме группой занимающихся (2— 4 человека); определение ролей и ответственности, выбор рационального способа создания модели.

Проектный метод. Самостоятельное продумывание и создание модели. Защита собственного проекта.

Соревновательный метод. Проведение соревнований

- на скорость сборки модели по заданной схеме;

- на скорость сборки модели по предложенному изображению;
- на прочность модели;
- на скорость передвижения роботов.

Словесный метод. Рассказ, беседа, описание, разбор, лекция, инструктирование, комментирование, распоряжения и команды.

Метод наглядного воздействия. Демонстрация готовой модели, созданной преподавателем; демонстрация готовой модели, созданной занимающимся; посещение соревнований по робототехнике; демонстрация фото-, видеоматериалов.

Метод релаксации. Выполнение гимнастического комплекса (физкульт-пауза) для снятия нагрузки на шейные отделы позвоночника, пальцы рук, тазобедренный сустав, мышцы спины.

Дискуссия. Смысл данного метода состоит в обмене взглядами по конкретной проблеме. С помощью дискуссии, обучающиеся приобретают новые знания, укрепляются в собственном мнении, учатся его отстаивать. Так как главной функцией дискуссии является стимулирование познавательного интереса, то данным методом в первую очередь решается задача развития познавательной активности обучающихся.

Методическое обеспечение:

Для успешного проведения занятий очень важна подготовка к ним, заключающаяся в планировании работы, подготовке материальной базы и самоподготовке педагога.

В этой связи продумывается вводная, основная и заключительная части занятий; просматривается необходимая литература, отмечаются новые термины и понятия, которые следует разъяснить обучающимся, выделяется теоретический материал, намечается содержание беседы или рассказа, подготавливаются пособия изготовления модели, подбирается наглядные ДЛЯ a также соответствующий дидактический материал, чертежи, шаблоны (в необходимом количестве комплектов).

В конце занятия, после сборки и тестирования модели, обучающиеся демонстрируют ее и дают оценку программе и техническим характеристикам:

указывается на положительные моменты, отдельные недостатки, после чего работы разбираются и детали складываются в конструктор.

2. Материально-технические условия реализации программы.

Для проведения занятий необходимо достаточно просторное помещение, которое должно быть хорошо освещено и оборудовано необходимой мебелью: столы, стулья, шкафы — витрины для хранения материалов, специального инструмента, приспособлений, чертежей, моделей. Для работы необходимо иметь достаточное количество наглядного и учебного материала и ТСО.

Для реализации программы необходимо:

- 1. Наборы конструктора FischerTechnik на базе процессора **ROBOTICS TXT** и ROBO TX.
- 2. Аккумуляторный набор. В набор входит один аккумулятор NiMH 8,4B / 1500 мА*ч и зарядное устройство.
- 3. Программное обеспечение (RoboPro)
- 4. БЛЛА
- 5. Программное обеспечение для компьютерной деятельности (MicrosoftOffice)
- 6. Компьютеры
- 7. Системное программное обеспечение (Windows)
- 8. Принтер
- 9. Картридж, бумага
- 10.Проектор мультимедийный
- 11. Экран для проектора
- 12.Сканер
- 13. Тренировочные поля (основание поля ламинированное ДСП, препятствия: горка, коробки, стенки, изолента черная, изолента красная, оргстекло, сетка, банки и др.)

Информационное обеспечение

<u>Кадровое обеспечение:</u>

Уровень квалификации педагога дополнительного образования, реализующего дополнительную общеобразовательную программу, соответствует квалификационным характеристикам по соответствующей должности, а также квалификационной категории.

2.2. Формы аттестации

В процессе обучения, обучающиеся не получают прямых оценок своей деятельности. Промежуточные итоги - оцениваются на занятиях через наблюдение, практические работы.

Способы определения результативности

Виды контроля,	Содержание	Формы/методы	
сроки		контроля	
Вводный (входящий)	Определение уровня знаний,	опрос, наблюдение	
(в начале 1-го и 2-го	умений и навыков		
года обучения)			
<i>Текущий</i> (в течение	Выявление ошибок и	наблюдение;	
всего учебного года)	успехов в освоении	опрос.	
	материала		
Итоговый			
(аттестация):			
конец 1-го полугодия	отслеживание динамики,	Сдача мини-проекта,	
по 1 и 2 году	прогнозирование	участие в конкурсах	
обучения	результативности		
	дальнейшего обучения		
конец 2-го полугодия	определение уровня	Выполнение теста по	
по 1 и 2 году	сформированности знаний,	теоретическим вопросам.	
обучения	умений и навыков по	Участие в	
	окончании курса обучения	соревнованиях,	
	каждого года	конкурсах, выставках	
конец всего курса	определение уровня	Собеседование по	
обучения	сформированности знаний,	теоретическим вопросам.	
	умений и навыков по	Участие в	
	окончании всего курса	соревнованиях,	
	обучения по программе	конкурсах, выставках и	
		проектах.	

Итоговый контроль обучающихся осуществляется при проведении аттестации через алгоритм сдачи тестов, участия в соревнованиях, конкурсах, выставках и проектах. Сроки проведения аттестации (предпоследняя учебная неделя 1-го

полугодия и предпоследняя учебная неделя 2-го полугодия) устанавливаются администрацией образовательного учреждения и фиксируются в его общем учебном плане.

Программа предполагает проведение мониторинга развития личности обучающегося, который отслеживает динамику развития личности по следующим параметрам и критериям:

- мотивация (выраженность интереса к занятиям; самооценка деятельности на занятиях; ориентация на общепринятые моральные нормы и их выполнение в поведении);
- познавательная сфера (уровень развития познавательной активности, самостоятельности);
- регулятивная сфера (произвольность деятельности; уровень развития контроля);
 - коммуникативная сфера (способность к сотрудничеству).

Оценочные материалы

Оценочные материалы необходимы для установления соответствующего уровня усвоения программного материала по итогам текущего контроля образовательной деятельности обучающихся и уровня освоения дополнительной общеразвивающей программы «Основы туризма» по итогам аттестации.

В соответствии с целью и задачами программы, используются следующие формы определения результативности освоения программы: собеседование, тест, опросный лист, анкетирование, соревнование, мониторинг (в соответствии с установленными критериями).

Список используемой литературы

Для педагогов:

- 1. Индустрия развлечений. ПервоРобот. Книга для учителя и сборник проектов. LEGO Group, перевод ИНТ, 87 с.
- 2. Трактуев О., Трактуева С, Кузнецов В. ПЕРВОРОБОТ: Методическое учебное пособие для учителя. М.: ИНТ.
- 3. Трактуев О., Трактуева С. Кузнецов В. e-LAB: Методическое учебное пособие для учителя. М.: ИНТ.
- 4. Филлипов С.А. Робототехника для детей и родителей. -СПб. изд. Наука РАН, 2013.
- 5. Сагритдинова Н.А. Fischertechnik основы образовательной робототехники. Методические рекомендации. – Всероссийский Учебно-методический Центр Образовательной Робототехники, 2012.

Для обучающихся:

- 1. Компакт диск с материалами «RoboPro».
- 2. Копосов Д. Г., Первый шаг в робототехнику: практикум для 5–6 классов, БИНОМ. Лаборатория знаний, 2012. 286 с.
- 3. Копосов Д. Г., Первый шаг в робототехнику: рабочая тетрадь для 5–6 классов БИНОМ. Лаборатория знаний, 2012. 88 с.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 149573922187837288311503629658482451098261240741

Владелец Киселева Марина Николаевна Действителен С 20.10.2025 по 20.10.2026